A compact portable laser system for mobile cold atom gravimeters

Jiaqi Zhong^{1,2}, Xiaowei Zhang^{1,2,3}, Biao Tang^{1,2}, Jin Wang^{1,2} and Mingsheng Zhan^{1,2}

- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071. China
 - 2. Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
 - 3. School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China e-mail: jqzhong@wipm.ac.cn

We have designed and realized a compact portable laser system for high sensitivity mobile cold atom interferometers. The laser system is mounted in a single module with the dimension of 45 cm \times 45 cm × 16 cm and emits lights directly on up to 13 fiber ports for 2-dimension magneto-optical trap, atom fountain, Raman transition and normalized double-sided detection. Α optical structure and mounts without kinematic adjustment are designed to achieve high level integration and stability. The laser system is applied to a mobile atom gravimeter and achieves a sensitivity of 28 $\mu Gal/Hz^{1/2}$. To date, it has stably run with the atom gravimeter for more than half a year without internal realignment.

(Group website) http://cap.wipm.ac.cn/

Figure 1: Photograph of the laser system. To improve the degree of integration, a series of the miniaturized optical components were designed.

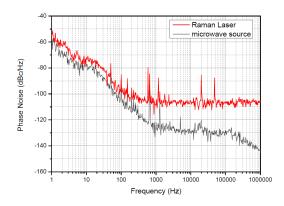


Figure 2: The phase noise of Raman lasers. The corresponding noise limitation of gravity measurement is calculated to be 9.4×10^{-10} g/shot (for T=200 ms).

Keywords: Atom interferometer, Laser system, Raman laser

References

[1] Xiaowei Zhang, Jiaqi Zhong, Biao Tang, Xi Chen, Lei Zhu, Panwei Huang, Jin Wang And Mingsheng Zhan, A compact portable laser system for mobile cold atom gravimeters, submitted to Applied Optics.